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Abstract

Researchers with discrete outcome data are often interested in estimating latent traits character-
izing their data. One popular method is Item-Response Theory (IRT). Unfortunately, standard
methods of estimating IRT models are ill-equipped for large, modern data or complex models. I
introduce a newmethod to political scientists – developed in computer vision – the Variational Au-
toencoder (VAE). A particularly structured VAE reliably estimates latent traits and item parameters
for millions of respondents with multiple dimensions orders of magnitude faster than traditional
MCMC methods. They can also easily be extended to handle missing data, correlated latent traits,
and scale easily across all types of problems. I also suggest methods for correcting VAE estimates
to match standard methods in finite samples. I demonstrate the method with several empirical
applications using the complete ballots of 40 million voters in the 2020 US election.
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1 Introduction

Researchers with discrete data (roll call votes, social media posts, positions taken on bills, etc.) are often

interested in mapping those data to a continuous, latent, quantity of interest (ideology, democratic

norms, etc.). For example, scholars studying ideological positions of actors began with the spatial

voting model developed in Poole and Rosenthal (1985) and have since expanded to a large number of

substantive applications using a wide variety of data (e.g., Martin and Quinn 2002; Shor and McCarty

2011; Barberá 2015; Bond and Messing 2015; Lauderdale and Herzog 2016; Burnham 2024; Cowburn

and Sältzer 2025; Lewis et al. 2025; Meisels 2025). The size and complexity of this data ranges from

analyses of a few thousand votes in the United Nations (Bailey, Strezhnev, and Voeten 2017) to millions

of social media followers (Barberá 2015).1 Standard approaches to estimating IRT models include

maximum-likelihood estimation, Hamiltonian Monte-Carlo (HMC), Expectation-Maximization (EM)

algorithms (Chalmers 2012; Imai, Lo, and Olmsted 2016; Peress 2022) or variational inference (VI)

(Grimmer 2011; Imai, Lo, and Olmsted 2016). Wu et al. (2020) compares the computational time

required to fit a model using each algorithm and finds that even the fastest methods take over 6 hours

to fit a model with 1.6 million respondents, 100 items, and a single latent dimension. This time cost is

perfectly acceptable for researchers who have similarly sized data. However, some modern datasets

contain more data or wish to estimate more complex models, and will be prohibitively slow. For

example, information on social media users, campaign contributions, or digital trace datasets are

essential to modern political science research and are still too large to estimate IRT models on.

In this article I introduce a new technique to political science for accurately and quickly estimating

ideal points at scale using variational autoencoders (VAEs). VAEs are closely connected to item-response

theory and have been shown in the psychometric literature to accurately estimate both ideal points and

other parameters of an ideal point model (Converse et al. 2021; Curi et al. 2019; Ma et al. 2024; Cho et

al. 2021). The size of the speedup can vary based on the problem, but in the empirical example I explore,

VAEs are appropriately accurate and about 5000 times as fast as traditional MCMC algorithms. This

1. Although note that although Barberá (2015) have data on millions of social media followers, they are unable to
estimate latent dimensions for all users and instead collapse their model down to just a few thousand estimates.
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kind of speedup is backed up by other simulation research in the computer science literature (Wu et

al. 2020). Similar to the recommendations of other authors who develop computational improvements

to the foundational ideal point method, I caution that this method is only an approximation of the

most complete Bayesian inferential approach. However, as I argue below, it is both acceptably accurate

in large samples and fast enough to justify as an alternative to other approaches. The use of VAEs

dramatically expands the types of data that can be used and the questions that can be asked using

latent dimension techniques. Moreover, VAEs are easily deployed using modern machine learning

frameworks that include many internal optimizations and can run on large scale computing clusters

designed for machine learning, a common resource available to researchers through cheap cloud

computing. I also provide code examples and practical tips and diagnostics for researchers looking to

implement a VAE.

2 Item-Response Theory

First, a brief overview of the traditional methods to estimate ideal points following Item-Response

Theory in the context of political science. IRT models in political science are closely connected to

the spatial voting model,2 where a voter is assumed to choose an option if the utility a voter derives

from that option is greater than any other option (Enelow and Hinich 1984). As a running example,

related to the empirical application in section 4, consider data on the candidate a given voter voted for

in each of the contests on their ballot. Jackman (2009) shows that beginning with the spatial voting

model plus the assumption that any stochastic error about this utility is normally distributed results

in the following model for the probability that a candidate is selected by a voter:

𝜋 𝑗𝑘𝑐 = 𝑃𝑟( 𝑦𝑗𝑘 = 𝑐|𝛼 𝑗, 𝛾𝑘𝑐, 𝛽𝑘𝑐) = 𝐹 (𝛼 𝑗𝛾𝑘𝑐 − 𝛽𝑘𝑐), (1)

where 𝑗 indexes voters, 𝑘 indexes the contest, and 𝑐 indexes the candidate in that contest.3 This

2. See Conevska and Mutlu (2025) for a critical evaluation of whether spatial voting models at the individual level are
the best model for evaluating voters. Given the historical importance of spatial voting and the novelty of the finding in
Conevska and Mutlu (2025), I focus here only on spatial voting.

3. Although I don’t show it here for clarity, the model can also be multidimensional. The additional dimension is
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model is the canonical two-parameter IRT model. There are three categories of parameters of interest.

First, 𝛼 𝑗 ∈ ℝ is the unobserved ideal point of voter 𝑗. Second, 𝛾𝑘𝑐 is an unknown item discrimination or

slope parameter for each candidate who could be chosen in the contest. 𝛾𝑘𝑐 describes the degree to

which a vote for a candidate in the contest informs the model’s placement of a voter’s ideal point. 𝛽𝑘𝑐

is an item difficulty parameter which measures the probability of a certain candidate being chosen,

irrespective of the underlying trait. In this context, this is the proportion of the votes that each

candidate received. Note that some elements of 𝛾𝑘𝑐 must be set to 0 to avoid rotational indeterminancy.

In the categorical case, where it may be hard a priori to know the direction of effects, this is usually

done randomly. Note that this issue of rotational indeterminacy is similar to typical identification

issues in ideal point models (Rivers 2003). 𝐹 (·) is a monotone function mapping the equation to the

probability line. The simple IRT model typically chooses the inverse logit function for 𝐹 (·), but for a

more general treatment I rely on the softmax function, a multivariate generalization of the inverse

logit.4 This choice reflects the reality that voters often have more than two candidates to choose

among on the ballot.

Combining the choice probabilities into a full likelihood yields the following model:

𝐿(𝛀, 𝛼 𝑗 |y𝑗) =
𝐾∏
𝑘=1

𝜋 𝑗𝑘𝑦𝑗𝑘 =

𝐾∏
𝑘=1

𝐹 (𝛼 𝑗𝛾𝑘𝑦𝑗𝑘 − 𝛽𝑘𝑦𝑗𝑘), (2)

where𝛀 includes both the discrimination and difficulty parameters and the notation [·] 𝑦𝑗𝑘 is used

to indicate which candidate voter 𝑗 actually chose in contest 𝑘. In the Bayesian sense, we can then

compute the posterior: 𝑝(𝜶,𝛀|Y) ∝ 𝐿(𝛀, 𝜶 |Y) · 𝑝(𝜶) · 𝑝(𝛀), where 𝑝(𝜶) and 𝑝(𝛀) are priors set by

the researcher.

There are a number of algorithms to estimate all of the parameters of interest, including Hamil-

reflected in the ideal point 𝛼 𝑗𝑑 and in the discrimination parameter, 𝛾𝑘𝑐𝑑 where 𝑑 indexes the latent dimension. The
difficulty parameter, 𝛽𝑘𝑐 , is the same for all dimensions.

4. Formally, the softmax is defined as

𝐹 (𝛼 𝑗𝛾𝑘𝑐 − 𝛽𝑘𝑐) =
exp(𝛼 𝑗𝛾𝑘𝑐 − 𝛽𝑘𝑐)∑𝐶𝑘

𝑐′=1 exp(𝛼 𝑗𝛾𝑘𝑐′ − 𝛽𝑘𝑐′ )
,

where 𝐶𝑘 is the is the number of candidates in contest 𝑘.
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tonian Monte Carlo (HMC) as implemented in Stan, expectation maximization (EM) algorithms

for certain types of data (Chalmers 2012; Imai, Lo, and Olmsted 2016; Peress 2022), and variational

inference (VI) methods (Grimmer 2011; Imai, Lo, and Olmsted 2016). HMC and EM algorithms work by

directly seeking to optimize the marginal log-likelihood 𝑝(𝒚 |𝜶), whereas VI instead learns a different

function 𝑞(𝜶) for the posterior distribution. VI has theoretical guarantees because it seeks to maximize

the evidence lower bound (ELBO), formally defined as:

ELBO = 𝔼𝑞(𝜶) [log 𝑝(𝒀 |𝜶;𝛀)] − KL[𝑞(𝜶) | | 𝑝(𝜶)] , (3)

where KL(·) is the Kullback–Leibler divergence between two distributions. By applying Bayes

Rule to Equation 3, we can see that

log 𝑝(𝒀 ) = ELBO + KL[𝑞(𝜶) | | 𝑝(𝜶 |𝒀 )]. (4)

Therefore, as the function 𝑞(𝜶) more closely resembles 𝑝(𝜶 |𝒀 ), we return to directly optimizing

themarginal likelihood. By selecting a simpler 𝑞(𝜶), VI makes estimation amore tractable problem. We

then estimate 𝜶̂ = argmax(ELBO) to obtain the latent points for each voter. Although I only reference

the ideal point 𝜶 here, we can also fit approximation functions for each of the other parameters in the

model.

Unfortunately, HMC, EM, and VI are all still insufficient for large data sets. To see why, consider

the data set of cast vote records released in Kuriwaki et al. (2024). Cast vote records are digital

representations of a ballot cast by a voter and they contain the candidate each voter voted for in each

contest on the ballot. They match perfectly with the setup at the start of this section. The data set

includes the ballots from 40 million voters and over 7000 unique contests. Estimating an IRT model

using this data combined with any of the three methods outlined above would involve estimating a

posterior, or an approximation of a posterior, for every single voter. Furthermore, for each additional

contest, we need to also calculate a discrimination and a difficulty parameter. As the number of

parameters increases, the estimation of each individual parameter becomes more challenging since we
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are estimating a joint distribution. Finally, if researchers are interested in estimating additional latent

dimensions, the problem increases by a factor of the number of additional dimensions. Although

technically possible, the computation of this model can be time and resource intensive. For medium

sized data, some researchers may be happy to simply wait the computational time required. But, for

large data where the time required is too much, or in cases where researchers may want to iterate,

the time cost can be prohibitive. In the next section I introduce a new, faster, method – variational

autoencoders.

3 Variational Autoencoders

Variational autoencoders (VAEs) are closely connected to variational inference. The difference is that

instead of choosing a distribution 𝑞(𝜶) to approximate each posterior, we instead build a single flexible

inferential model that predicts the posteriors for each ideal point. The parameters of this model are

shared by all observations in the data, making the size and complexity of the model or the number of

parameters to estimate simply a function of researcher choice instead of scaling with the number of

observations. By carefully constructing the model such that it is both interpretable and sufficiently

flexible, we can recover all three types of parameters of interest from the standard IRT model. It turns

out that a good choice for a VAE.

In general, VAEs are a semi-supervised machine learning method. Intuitively, an autoencoder

encodes the input (the choices of each voter in each contest) to a latent dimension(s) using a learned

neural network, then decodes this latent representation to reconstruct the original input using a second,

connected, learned neural network. Autoencoders have been in use in the machine learning literature

for over a decade. Originally developed for image recognition, their use has since expanded into other

areas (Kingma and Welling 2019). We make the autoencoder "variational" by using it to approximate

the true posterior.

Formally, assume the posterior distribution of the latent variables comes from a multivariate

normal distribution:
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𝜶𝒋 ∼ MVN(𝝁𝒋, diag(𝝈𝒋)), with (𝝁𝒋, 𝝈𝒋) = NeuralNet𝜙(𝒚𝒋), (5)

where 𝝁𝒋 and 𝝈𝒋 characterize the mean and standard deviation of the multivariate normal (MVN),

and 𝜙 contains all the parameters of the neural network model. Together, these constitute the entire

“encoder” part of the VAE. To optimize the new parameters we now maximize a slight variation of the

ELBO shown in Equation 3:

ELBO = 𝔼𝑞𝜙 (𝜶) [log 𝑝(𝒀 |𝜶;𝛀)] − KL[𝑞𝜙(𝜶) | | 𝑝(𝜶)] , (6)

where instead we are maximizing parameters of the neural network instead of directly maximizing

voter posteriors.

A VAE model is trained by minimizing the loss between the original data and the learned data

construction, where the parameters of both the decoder and encoder networks are adjusted using

standard methods stochastic gradient descent and backpropagation. I reparameterize the model to

ensure backpropagation can properly occur because taking gradient of the ELBO with respect to the

parameters 𝜙 is not possible (Wu et al. 2020; Urban and Bauer 2021). To see this, note that

∇𝜙ELBO = ∇𝜙𝔼𝑞𝜙 (𝜶) [log 𝑝(𝜶) − log 𝑞𝜙(𝜶)]

≠ 𝔼𝑞𝜙 (𝜶) [∇𝜙 log 𝑝(𝜶) − ∇𝜙 log 𝑞𝜙(𝜶)] ,
(7)

because the expectations are taken with respect to 𝑞𝜙(𝜶), which is a function of 𝜙. We resolve this

problem by reparameterizing 𝜶 as

𝝐 ∼ MVN(𝝐)

𝜶 = 𝝁 + 𝝈 ⊙ 𝝐,
(8)

where 𝝐 is a 𝐷 × 1 sample from a standard multivariate normal distribution and 𝝁 and 𝝈 are
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outputs from the NeuralNet above. This removes any of the "randomness" in 𝜶 by rewriting it as a

deterministic function of the NeuralNet parameters 𝜙. Therefore, we can now calculate the second

line in Equation 7 where the expectation is now taken with respect to MVN(𝝐). These models can

easily be implemented in PyTorch, Keras, or any other standard machine learning library.

Figure 1: Architecture of a 2-Dimension VAE. Depicts the architecture of a VAE with two
latent dimensions. Orange boxes represent both inputted data (leftmost box) and the learned
representation of that data (rightmost box). From left to right, the light blue boxes represent a
user-specified number of hidden layers of a user-specified size, then a user-specified sampling layer,
then the output of the encoder network in the form of two parameters, 𝜇 and 𝜎 2 that characterize
the distribution of the latent normal distribution for each of the two latent parameters. For each
latent dimension, the set of two parameters are then fed through the decoder network. Heavy
dashed lines represent a densely connected network, where every node or neuron on one side of the
line is connected to every other node on the other side. Solid lines simply represent a connection
between one node and another. Light dashed lines outline the components of the architecture
that are referred to, respectively, as the encoder and decoder.

Figure 1 visually represents a basic VAE with two latent dimensions. Beginning from the left side

of the diagram, data are fed as inputs to the encoder model, which is composed of some number of

hidden layers before passing through a sampling layer. The sampling layer produces the parameters 𝜇

and 𝜎 2 when a normal distribution is imposed. Those latent dimensions are then passed through the
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decoder network to reconstruct the original data.

There are a couple points to make about the connection between the VAE and IRT model. First,

VAEs add an assumption that the latent dimension(s) follow some probability distribution, in many

cases, a multivariate normal distribution. Notice the similarity between this assumption and the

assumption in a classical spatial voting model that errors are distributed normally. This assumption

is encoded as a "sampling layer" at the end of the encoding model which then outputs parameters

describing the distribution of the model (in the standard normal case, a parameter 𝜇 and 𝜎 ). The

second modification is that the decoder network has only a single layer that passes the learned latent

variables through the the exact same 𝐹 (·) function as in Equation 1. For example, if the 𝐹 (·) function

is a sigmoidal activation function, then 𝜎 (𝑧𝑖) = (1 + 𝑒−𝑧𝑖)−1 where 𝑧𝑖 =
∑𝐾
𝑘=1 𝑤𝑘𝑖𝛾𝑘 + 𝛽𝑖. Here, 𝑤𝑘𝑖 is

the weight between the 𝑘-th and 𝑖-th nodes in the second-to-last and output layer, respectively. 𝛾𝑘 is

the activation of the 𝑘-th node in the second-to-last layer, and 𝛽𝑖 is the bias value of the 𝑖-th node in

the output layer (c.f. Converse et al. 2021). Notice the intentional use of the same parameters 𝛾 and 𝛽

as in the IRT setup – these weights and biases of the VAE can be interpreted in the same manner as

the discrimination and difficulty parameters in the IRT model (Curi et al. 2019).

Model Architecture Of course, a key component of a VAE is how to construct the model architec-

ture. Unfortunately, there are not absolute recommendations, but I’ll provide some suggestions. For

the hidden layers in the encoder, I generally recommend multiple hidden layers and to choose a size

for each hidden layer as a multiple of 2 (in the models I fit below, I choose 64). The size and number of

these hidden layers is a balancing act of computational time and GPU memory – larger layers with

more hidden layers tend to be more “flexible” models but are also more challenging to fit. The number

of latent dimensions should be theoretically driven depending on researcher discretion. In machine

learning it is also common to batch responses together, a process called “mini-batching.” Again, larger

batches are generally “better” but more computationally challenging to evaluate. Here, I use batches of

size 256. I set a standard learning rate of 0.001.
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3.1 Extensions

The literature on VAEs in general is rich and contains many optimizations to the basic model presented

here or specific adaptations for other circumstances. Here, I overview two relevant extensions for

political scientists: missing data and correlated latent dimensions.

Missing Data Missing data are common in political science applications, but unfortunately due

to its neural network structure are a challenging application for a VAE. The problem lies in the step

within a neural network where gradients are computed with respect to each of the network parameters.

Where parameters are missing, the gradient cannot be computed. Similar to other missing data work,

listwise deletion or otherwise just dropping missing data is not advised for statistical efficiency in

general. In the running example of voter level ideal points based on their votes on their ballot, deletion

is impossible – across the full set of voters only the presidential contest is shared by all voters. All

contests that a voter could not have cast a ballot in are labeled “missing.” Previous work on voter level

ideal points has obviated this problem by constructing the data such that all voters have the same

choice set (e.g., Lewis 2001). Models to handle this kind of data are only rarely addressed in political

science, with one notable exception constructing a different kind of multinomial logit estimator for

the varying choices (Yamamoto 2014).

There are several solutions to missing data proposed in the VAE literature. Veldkamp, Grasman,

and Molenaar (2025) review the options and conduct simulation of each method. Of the methods

they tested, the “conditional VAE” had the lowest error compared to the true values and was also one

of the fastest methods. Conditional VAEs are intuitively simple. Instead of dropping missing data

or imputing missingness, we can simply pass a mask of 1s and 0s to the VAE as an additional input

(Collier, Nazabal, and Williams 2020). The mask is used in two steps – first in the initial hidden layers

to zero out any inputs that are missing, and then again in the loss function to ensure that loss is only

computed for values that are actually present in the data.
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Correlated Latent Dimensions The current implementation of the VAE forces each of the latent

dimensions to be independent. In cases where this might be an unreasonable assumption, researchers

could instead allow for, and directly model, the correlation between latent dimensions. For example, in

studies of American politics it might be reasonable to allow the first dimension, typically assumed to be

ideology, to also correlate with additional dimensions – e.g., economic values or social policy. From a

modeling perspective, the change is subtle but impactful. Instead of training our model to fit the latent

space to the standard normal distribution,N(0, 𝐼), researchers can instead fit it toN(0, Σ0) where Σ0

is a 𝐷 × 𝐷 matrix with entries for each latent dimension (Converse et al. 2021). The estimation of the

VAE does not substantively change, except that we need to additionally pass a correlation matrix to

the model, typically denoted as Σ1, to prevent identification/rotation issues.

4 Empirical Application

4.1 Code and Implementation Details

I estimate these models using a bespoke model, fit on ballot level data from the United States in the

2020 election.5 More details on the data can be found in Appendix A. The model is fit with a standard

categorical cross-entropy loss function, 20 epochs, mini-batching, and an AMSGrad optimizer. I

implement early stopping on the training loss for additional efficiency. As a rough comparison in

computation time, it took the MCMC algorithm 3 hours and 45 minutes to fit a single-dimensional

model on a subset of the data using part of Adams County, Colorado, including 250,000 votes.6 A

two-dimensional model does not complete warmup in 48 hours on the same dataset. In contrast, it

took the VAE 90 seconds (1/150th of the time) to fit a single-dimensional model using all 6.4 million

votes in Adams County, Colorado. To be clear, despite the model using the same architecture on the

full data, the actual evaluation of the close to 1.3 billion votes in my full data precludes the model

from running in the same exact time as the smaller subset. However, the run time increases much

5. The code can be found at https://github.com/mreece13/cvr-ml/blob/main/main_lightning.py.
6. Note that this model is already highly optimized and was run on a high-powered GPU using variational inference as

initialization values.
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Figure 2: Comparison of MCMC and VAE Methods. The left plots display the the
densities of the mean ideal point for voters who selected Joseph R Biden or Donald J Trump in
the presidential contest. The right plot directly plots each matched voter’s mean ideal point from
the VAE algorithm and the MCMC algorithm. The solid black line is a loess line fit to the data
and the dashed black line is the 45 degree line.

more slowly than the number of observations increases. For example, fitting a VAE on the full state of

Colorado (26 million votes) only took 4 minutes to reach optimal convergence whereas the MCMC

algorithm cannot finish warmup in 48 hours.

4.2 Validation

My initial visual inspection of the model is positive. I fit a single dimensional model on a subset of

the data using MCMC and VAE and then plot the ideal points from both models in the left side of

Figure 2.7 The plot displays the distribution of ideal points among Biden (Democratic) and Trump

(Republican) voters in the 2020 election. Both the MCMC and VAE plots are clearly bimodal and place

7. The MCMCmodel can only be run on a subset of voters from Adams County, Colorado, a suburb of Denver. The
VAE model is fit on the entire state of Colorado, then subset down to just the same subset of voters in Adams County for
comparison.
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Biden (Trump) voters on the left (right) side of the axis. This matches the findings from other research

in this area.8 In the MCMC models, the two clear peaks around 0 and 0.7 are primarily straight-ticket

voters for Democratic and Republican candidates respectively. For those voters, it can be hard to

ascertain exactly where they are in the space relative to other strong party voters, a common criticism

of ideal point models. In the right plot of Figure 2, I directly plot the estimates from each model against

one another. Again, there is clear separation between the two parties, and the estimated ideal points

correlate at 0.97. As can be seen in the plot, the models fit very similarly to one another.

Comparison of candidates across contests also support the model’s success. For example, Diana

de Gette, a House of Representative candidate from Denver, is the candidate with the most similar

features to Joe Biden. Diana de Gette voted with Joe Biden’s position 100% of the time in the 117th

Congress, served as a deputy whip in the House, and is roughly in the middle of the DW-NOMINATE

specification from the 117th Congress (Does Your Member Of Congress Vote With Or Against Biden?

2021; Lewis et al. 2025). These results suggest that the model is correctly grouping both voters and

candidates.

Correcting Bias If researchers are unconvinced by the method, they could also use the following

procedure to “de-bias” the VAE estimates: (1) estimate an MCMC model on a small random subset

of the data; (2) estimate a VAE model on the full data; (3) using the overlapping points, build a

predictive model that maps the VAE estimates to the MCMC estimates; (4) using that predictive model,

correct the remaining VAE estimates. Randomly selecting data to be included in the random subset

is challenging, but I suggest using a method that well-estimates specific contests using MCMC. For

example, researchers could randomly select precincts, which all vote on the same contests, then select

some (or all) voters within that precinct. The choice of prediction model is also important, but likely

follows from standard recommendations for predictive models – choose a flexible model and rely on

cross-fitting to avoid overfitting. Armed with the validation of VAE models and correction from a

predictive model, researchers should feel comfortable to proceed with VAE estimates as if they were

8. For example, Bafumi and Herron (2010) plot the distribution of voter ideal points measured using the 2006 CCES in
Figure 5, where we can clearly see a roughly bimodal, although largely inseparable distribution.
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MCMC estimates.

4.3 Example Substantive Uses

These data can be used for interesting substantive evaluations in political science. For example, in

Figure 3 I show a comparison of the underlying "ideology" of each of Colorado’s state house districts. In

the top plot are estimates of the mean ideal point (or, using the terminology of spatial voting scholars,

the pivotal voter) in the district, including an inset of the Denver metro area to see the districts more

clearly. In the bottom plot is the same area but instead ’ideology’ is computed as the difference in

vote share between the Republican and Democrat in the contest, using precinct level results (Baltz

et al. 2022). Setting aside uncontested elections and missing counties (represented with grey districts),

there are some interesting differences in the plots. For example, despite electing a Democrat in a

southwestern district (District 62) of Colorado, the underlying ideal point model suggests that the

district trends more Republican in general. Donald Valdez was the Democratic candidate in District 62,

who received 57.8% of the vote compared with the 50.5% Joe Biden received from the same voters. This

could suggest that Valdez is a popular candidate among both parties who gets votes from people who

are otherwise Republican voters. It’s hard to directly make comparisons between the two methods

since they are inherently on different scales, but this kind of analysis is suggestive of the greater power

and usefulness of the model. This analysis also serves as an additional validation of the model using

real vote shares instead of just comparing to the MCMC method.

13



Figure 3: Comparison of Vote Share in State House Elections and Underlying Ideal
Point Estimates. The top plot displays the mean ideal point among voters in each state house
district in Colorado. Districts that are more blue lean more towards the Democrats, whereas
districts that are more red lean towards the Republicans. On the left side is a map of the entire
state, sans Denver, whereas on the right side is a zoomed in figure of the greater Denver area.
This structure and label is then repeated in the bottom plots, which use precinct-level results
in state house elections (Baltz et al. 2022). In the bottom plot, I have labeled two state house
districts where the methods report different underlying ’ideologies’ of the district. In the bottom
plots, gray districts represent uncontested elections where a vote share breakdown does not make
sense. In the top plots, gray districts can represent either uncontested elections (the exact same
elections as in the bottom plots) or districts where entire counties are missing from the CVR data.
A clear example of the missing counties can be seen in the Denver inset in the top plots, where all
of the districts in the bottom right are missing – these are part of Arapahoe County, a county
which is missing valid data in the CVR dataset. See Kuriwaki et al. (2024) for more information
on what defines “valid” data in this context.
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Figure 4: Underlying Latent Ideology of Uncontested Elections. The plot displays, for
each uncontested District Attorney contest in Colorado, the distribution of each ideal point for
voters who could’ve cast a ballot in the contest. The distributions are colored by the party of the
candidate who won.

Equipped with a measure of the underlying "ideology" of a district, I can also evaluate contests

with only one candidate. Using precinct-level data would be uninformative here, since all candidates

receive (notwithstanding write-ins), 100% of the vote. In Figure 4, I plot the underlying ideal point

distribution for all uncontested District Attorney contests in Colorado. Although mostly the plot

supports the hypothesis of some scholars that elections are uncontested when the district is highly

skewed towards one party (Hall 2019), there are also examples of districts that appear to be competitive.

District 10, at the bottom of the plot, elected a Democrat but has a clear spike on the right side of

the distribution as well. I’m not sure that a Republican would’ve necessarily won the election, but a

contest would’ve likely at least been competitive.

Alternatively, we might be interested in analysis beyond the first latent dimension. For example,

are ballot questions ideological in nature or do they load on different dimensions? Without estimates

of multidimensional latent models which also include top of the ticket, and clearly ideological, models,

it is hard to quantitatively link these concepts together and test propositions for ideological voting.

In Figure 5, I display the point estimates for the discrimination parameters for the "yes" votes on
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Figure 5: Distribution of 𝛾 Among Statewide Propositions Using Four Latent Di-
mensions. Displays the estimated discrimination parameter, 𝛾, for a "yes" vote on each of the
statewide propositions in Colorado, when the model is estimated using four latent dimensions.
The first column, latent dimension 0, is colloquially referred to as ideology, both because it
clearly separates the presidential candidates Donald J. Trump (Republican) and Joseph R. Biden
(Democrat), and because of the historical reasoning to refer to the first dimension as ideology.
Given this interpretation, points that are to the left of the red dashed zero line indicate that a
"yes" vote on this proposition is the more "liberal" or "Democrat" vote. Latent dimensions 1-3
do not have a common interpretation.
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every statewide proposition in the 2020 Colorado general election. The model was fit with four latent

dimensions. In latent dimension 0, which I have termed ideology, we can see clearly that some of the

propositions are highly informative about a voter’s placement on the ideological scale. These include

contests that we might intuitively expect to be on this scale – banning abortion and ensuring only

citizens vote. However, the model also reveals unexpected ideological patterns on the re-introduction

of gray wolves to the wild in Colorado. Latent dimensions 1-3 are more challenging to interpret and

require further analysis to make substantive claims, but researchers who might be more informed on

the minutiae of ballot propositions could have more to say.

Figure 6: Underlying Ideal Point Estimates in US House Districts. The plot displays the
mean ideal point among voters in each House district in the US. Districts that are more blue lean
more towards the Democrats, whereas districts that are more red lean towards the Republicans.
Gray districts can represent either uncontested elections or districts where entire counties are
missing from the CVR data.

Finally, the speed of estimation allows me to fit an IRT model to votes from the entire nation and

jointly scale all voters. The bridging contest in this case is only the US President, but initial results

suggest this is sufficient. Using a random sample of precincts from every county in the country (∼44

million votes), I fit a one-dimensional IRT model, then plot the underlying ideal point distribution for

every US House district in Figure 6. Facially, the results seem to line up with our expectation, where
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more rural districts are more Republican and conservative than urban districts.

5 Conclusion

This paper has introduced and validated a new method for estimating item-response theory (IRT)

models – the variational autoencoder (VAE). VAEs are fast and accurate and open up the possibility

for researchers to use new big datasets in combination with a popular method for scaling. I show

using three empirical examples of how VAEs can be used to reveal relationships that were previously

challenging to uncover using traditional methods. The literature on VAEs in computer science is vast,

and many developments on the base model could continue to refine and develop this method. Future

research should explore these possibilities.
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Appendix

A Cast Vote Record Data
I use ballot-level data, commonly called ”cast vote records” (CVRs), from the 2020 general election.
CVRs are anonymized records of all the choices made by each voter on their ballot. The data is fully
anonymous and I am unable to identify anything about the voters except where they voted. The data
has been standardized into a common format across the nation to facilitate analysis.1

CVRs from the 2020 election were released by some local election administrators in response
to increasing calls from election activists to be able to independently verify the results of the 2020
election.2 I do not know why each county in my data released their data so I treat my data as a
non-random sample of CVRs. Nevertheless, it contains over 600 million choices in elections at all
levels of government and in localities of all kinds from all over the country, representing the votes
of about 28 million voters. I first remove all candidates who received less than 50 votes in the data,
then remove all races where only one candidate was contesting the election, and finally remove all
races where a voter could select more than one candidate.3 The full set of CVRs covers 20 states, 327
counties, 28 million voters and 7,000 unique offices. See Figure A.1 for the full distribution of the data.
This data allow me to simultaneously study local-level heterogeneity and make comparisons between
more jurisdictions.

1. More details on this process can be found in Kuriwaki et al. (2024)
2. Some states prohibit releasing CVRs in any form, and for other states the ability to do so depended on whether a

group requested them from a certain county, whether the county used technology enabling this data to be easily compiled,
and whether the county election office had the capacity to even complete the request.

3. Future research should model these types of races since they represent about 10% of all elections in the data
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Figure A.1: Cast Vote Record Distribution. Figure reproduced from Kuriwaki et al. (2024).
This is a map of the United States subdivided by state and county. Panel A shows the full map of
the United States, whereas Panel B zooms in on only the states where I have coverage.
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