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Abstract

Partisanship is an enduring aspect of voters’ behavior in American elections, yet
nearly 70% of local governments in the United States use nonpartisan elections.
One strand of research emphasizes the nonpartisan duties of local governments
while another focuses on the convergence of national, state, and local preferences,
policies, and politics. I use an original, ballot-level, data set to estimate an ideal
point model on 7,500 voters in Adams County, Colorado, then use the model to es-
timate the degree of partisan voting in nonpartisan elections. I show that although
partisanship is more present in partisan elections, voters still use partisanship in
nonpartisan elections to choose among candidates. There is also important hetere-
ogeneity based on the contest, which my method demonstrates more clearly than
previous research.
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Introduction

Partisan identification is a central vehicle through which American voters see them-

selves, process political information, and make political decisions (Campbell et al. 1960;

Fiorina 1981; Green, Palmquist, and Schickler 2002). When Americans head to the polls,

they must become informed and decide which candidates to support (Downs 1957).

Due to the centrality of partisan identification, political parties are incented to culti-

vate ”party brands” (Aldrich 2011) that make the party affiliation of candidates a use-

ful ”heuristic” (Mondak 1993; Lau and Redlawsk 2001; Kam 2005) of what candidates

stand for and are likely to do once in office. Given the regularity with which partisan

control of state and local governments predicts policy outcomes (Hertel-Fernandez

2019; Grumbach 2022), party labels are an increasingly useful heuristic for voters up

and down the ballot.

Yet, across the U.S., 70% of local governments use nonpartisan election systems (De-

Santis and Renner 1991; Svara 2003), in which candidates are elected without a partisan

primary process and, crucially, no party labels are present on the ballot (Adrian 1952,

1959; Bledsoe and Welch 1987). Do patterns in vote choice also fall along a partisan di-

vide in the absence of party labels on the ballot? Recent research on the nationalization

of subnational politics (Hopkins 2018), the increasing correlation between local policy

and elite preferences (Tausanovitch and Warshaw 2013), and the convergence of voting

behavior at the local level to the national level (Sievert and McKee 2019; Weinschenk

2022; Kuriwaki 2023) would suggest that partisanship continues to be a dominating

influence on American political behavior, even when elections are nonpartisan.

This research primarily relies on survey data and aggregated data to draw correla-

tions between groups. Survey research is limited by interviewers’ inability to ask voters

who they voted for in every single contest on the ballot, and by voters’ unreliable re-

ports about who they cast their ballots for (Ansolabehere and Hersh 2012). Aggregated

data overcomes these two issues by using real election results and examining up- and
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down-ballot races. However, aggregated data sets cannot track the same voter in dif-

ferent races and must rely on strong ecological inference assumptions to make valid

claims. To avoid these problems, I use an original data set of ballot-level data, com-

monly called ”cast vote records” (CVRs), that reveals anonymous, individual voter

choices in each race in the 2020 election. CVRs contain the true votes on all races a

voter could have cast a ballot for in the election, which helps them avoid some of the

issues of survey and aggregated data. The downside of using CVRs is that they reveal

very little information beyond vote choice. CVRs do not have any names, voter IDs,

demographic information, or any other identifying information.1 Despite their limita-

tions, CVRs allow me to explore down-ballot heterogeneity and set the stage for future

research using ballot-level data.

I estimate ideal points for voters with cast vote records, continuing a rich tradition

of using dimension reduction techniques to better understand political actors using

large, public data. I use the item-response theory method developed in Lewis (2001)

and Clinton, Jackman, and Rivers (2004), but modify it in two ways. First, I slightly

adapt the model to allow for categorical choices, which better represents the choices

voters face on their ballots. Second, I leverage what are typically nuisance parameters

in the estimation as quantities of interest to better answer the question at hand. In

the methodology section, I expound more on these choices and what they mean for

the estimation of the model and interpretation of its results. My research additionally

contributes to the ideal point literature by focusing on an understudied group, voters

themselves. Policymakers regularly produce large amounts of public data (e.g., roll

call votes, social media posts, and campaign contribution records) that have been used

to estimate ideal points (Poole and Rosenthal 1985; Barberá 2015; Bonica 2014), while

voters do not regularly produce big data that is shared publicly. CVRs are an exception

to this, since they are both publicly available and represent the choices of all voters in a

1. See Kuriwaki, Lewis, and Morse (2024) for a review of the privacy of CVRs. Their basic conclusion
is that CVRs reveal no more about the secret ballot than aggregated, precinct-level results do.
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jurisdiction.

In this paper, I demonstrate a proof-of-concept method to estimate voters’ general

political orientation using anonymous ballot-level data on voter choices in Colorado’s

2020 presidential election. I use these measures to assess the degree of partisan voting

in nonpartisan elections. I show that partisan voting exists in nonpartisan elections,

although it is not nearly as prevalent as in partisan elections. I find important hetero-

geneity among the offices on the ballot, although I defer to future research to discover

why this pattern exists. I proceed as follows. I first review the literature and develop

competing theories for why voters will (not) vote like partisans in nonpartisan elec-

tions. Second, I introduce my method for estimating voter ideal points and validate

it with other, similar methods. Third, I use those measures to adjudicate between my

competing theories. Finally, I conclude with steps for future research.

Partisanship in Nonpartisan Elections

Two separate but related investigative threads provide the basis for the answers this

study might deliver. On the one hand, the distinctiveness of the work subnational gov-

ernments do – often nonpartisan and nonideological in nature with a focus on eco-

nomic growth and development (Peterson 1981; Oliver, Ha, and Callen 2012; Anzia

2021) – would cast doubt on the expectation that vote choice in nonpartisan elections

would fall along any sort of partisan dimension. On the other hand, the nationalization

of subnational politics (Hopkins 2018), increasing correlation between local policy and

elite preferences (Tausanovitch and Warshaw 2013), and convergence of voting behav-

ior at the local level to that of national politics (Sievert and McKee 2019; Weinschenk

2022; Kuriwaki 2023) would suggest that partisanship continues to be a dominating

influence on American political behavior, even when not made readily accessible by the

ballot itself.
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Around the turn of the 20th century, progressive reformers called for changes to

America’s political system that would insulate government from the pressures of par-

ties and political machines. One way they advocated for this to happen was to make

local elections nonpartisan. In their view, those elected to judges should be seen as

”neutral arbiters” rather than ”political officers” (Bonneau and Hall 2009) and those

elected to local government should act as ”business-like administrators” (Adrian 1952).

Put another way, reformers believed that ”there being no Republican way to pave a

street and no Democratic way to lay a sewer” (766), candidates should be elected based

on merit rather than party connections. Consequently, by 1956, 61% of municipalities

used nonpartisan elections (Adrian 1959), increasing to over 70% in recent years (De-

Santis and Renner 1991; Svara 2003). Broadly, the American public seems to have sup-

ported this change, and is generally in favor of using nonpartisan elections to fill key

roles (Alvarez, Hall, and Llewellyn 2008; Crawford 2022). Have the efforts of reformers

been successful in removing partisanship from local elections?

Anzia (2021) suggests that there is little evidence to show that voter preferences

on local issues mirrors preferences on national issues, initial evidence in favor of non-

partisan elections. Indeed, previous work focusing on specific local offices has found

mixed evidence of partisan voting behavior in local executive (Schaffner, Streb, and

Wright 2001; Taylor and Schreckhise 2003; Alvarez, Hall, and Levin 2018), state legis-

lator (Schaffner, Streb, and Wright 2001; Ansolabehere et al. 2006; Garlick 2015), judge

(Squire and Smith 1988; Klein and Baum 2001; Rock and Baum 2010; Burnett and Tiede

2014; Bonneau and Cann 2015; Lim and Snyder 2015; Kritzer 2021; Weinschenk et

al. 2021), and school board (Weinschenk 2022) offices. The initial goals of nonparti-

san elections combined with mixed evidence to the contrary indicate that nonpartisan

elections might be nonpartisan.

Although some research suggests that nonpartisan elections are truly nonpartisan,

researchers have repeatedly, and increasingly, emphasized the role of partisanship in
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voters’ choices in all types of elections. When choosing candidates in elections, espe-

cially in down-ballot, low information elections, voters rely on ”heuristics” to help

make sense of political information without needing to carefully scrutinize it for them-

selves (Downs 1957; Mondak 1993; Lau and Redlawsk 2001). One such heuristic is the

party affiliation of candidates on the ballot before them (Kam 2005). The utility of party

labels has been enhanced by the nationalization of state and local politics (Hopkins

2018). As Democrats and Republicans across levels of government have increasingly en-

acted policies concordant with the platforms of their national parties (Grumbach 2022)

– the result of concerted efforts to implement cohesive ideological agendas in subna-

tional governments (Hertel-Fernandez 2019) – American voters can reliably foresee the

sort of policy outcomes that will arise from voting Democrat or Republican candidates

to office. Indeed, recent evidence suggests a correlation between local public opinion,

elite preferences, and policy outcomes in subnational governments (Tausanovitch and

Warshaw 2013; Einstein and Kogan 2016; de Benedictis-Kessner and Warshaw 2016;

Einstein and Glick 2018; de Benedictis-Kessner, Jones, and Warshaw 2023; Sievert and

McKee 2019; Weinschenk 2022; Kuriwaki 2023). In parallel to the regularity with which

partisan control of government structures the ideological agendas subnational govern-

ments pursue, among the mass public, issue orientations increasingly structure the

partisanship of voters (Highton and Kam 2011). Together, trends at mass-, elite-, and

policy-levels suggest that ideology increasingly structures political outcomes.

Although in this research I cannot address it, I acknowledge that voters’ ability to

take advantage of partisan cues may be dependent on other factors. Voters with high

levels of base political knowledge may be more capable of identifying the partisanship

of a candidate based on other heuristics (Delli Carpini and Keeter 1996; Schaffner and

Streb 2002). As a complement to baseline political knowledge, the information envi-

ronment in which a voter resides will also affect their ability to make this connection.

Local news coverage can help inform voters on a candidate’s partisanship or otherwise
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help them identify how well the candidate represents them (Schaffner and Streb 2002;

Rock and Baum 2010; Peterson 2017; Moskowitz 2021).

The initial goals of progressive reformers and some research suggests nonpartisan

elections remain nonpartisan, while other work highlights the presence of partisan cues

and voting behavior in nonpartisan elections. In the next section I outline the method

I use to help adjudicate between these competing explanations. The results I show

contribute to this literature because they rely on the full cast ballots of voters, rather

than work using aggregated data (e.g., Hopkins 2018) or survey work (e.g., Jensen et

al. 2021). In the next section, I detail the method I use to estimate the degree of parti-

sanship in nonpartisan elections.

Methodology

Dimension reduction techniques are regularly used to uncover common latent dimen-

sions among policymakers. These methods have been applied to roll call votes (Poole

and Rosenthal 1985; Lewis et al. 2024), social media posts (Barberá 2015), campaign

contribution records (Bonica 2014, 2018), executive branch members (Bertelli and Grose

2011), judicial decisions (Bailey and Maltzman 2011; Lauderdale and Clark 2012; Mar-

tin and Quinn 2002), bureaucrats (Clinton et al. 2012), interest groups (Crosson, Furnas,

and Lorenz 2020; Abi-Hassan et al. 2023), international political parties (Herrmann

and Döring 2023), and online platforms like YouTube (Lai et al. 2024). Typically, this

research takes a large corpus of public data produced by policymakers and transforms

it into a single (or, sometimes, multiple) measure that describes the actors in that space.

I follow previous work in assuming that the first dimension is a measure of ”ideology”,

but there is nothing inherent about the methods used that guarantees the first common

dimension is ideological in nature (Poole and Rosenthal 1985).

The method for estimating voter ideal points using ballot-level data was originally
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pioneered by Lewis (2001). Lewis uses an item-response theory method, similar to

Poole and Rosenthal (1985) and formally described in Clinton, Jackman, and Rivers

(2004). I extend this method to use all contests on the ballot, rather than limiting the

data to only contests that can be represented by a binary variables, as Lewis does.2

I apply this method to ballot level data, which I describe more formally in the next

section.

Data

I use ballot-level data, commonly called ”cast vote records” (CVRs), from the 2020 gen-

eral election. CVRs are anonymized records of all the choices made by each voter on

their ballot. The data is fully anonymous and I am unable to identify anything about

the voters except where they voted. The data has been standardized into a common

format across the nation to facilitate analysis.3

CVRs from the 2020 election were released by some local election administrators in

response to increasing calls from election activists to be able to independently verify

the results of the 2020 election.4 I do not know why each county in my data released

their data so I treat my data as a non-random sample of CVRs. Nevertheless, it con-

tains over 1 billion choices in elections at all levels of government and in localities of all

kinds from all over the country, representing the choices of roughly 40 million voters. I

remove all uncontested races5, and all races where a voter could select more than one

candidate.6 For this paper, to demonstrate my method and to make estimation compu-

2. In Appendix A, I formally describe the binary variable method and show how it could be applied
to my data.

3. More details on this process can be found in Kuriwaki et al. (2024)
4. Some states prohibit releasing CVRs in any form, and for other states the ability to do so depended

on whether a group requested them from a certain county, whether the county used technology enabling
this data to be easily compiled, and whether the county election office had the capacity to even complete
the request.

5. I first remove all candidates who received less than 20 votes in the data, then remove all races
where only one candidate was contesting the election.

6. Future research should model these types of races since they represent about 10% of all elections in
the data
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tationally tractable, I focus only on the state of Colorado, and randomly select 83, 729

voters to study, representing ∼ 2.7 million choices. For the most advanced model,

which I describe below, I additionally subset this data to only voters in Adams County,

Colorado. The Adams County data contains 7, 535 voters, representing ∼ 250, 000

choices. For a comparison of Adams County, Colorado at large, and the United States

on a number of demographic and electorally relevant variables, see Table 1. The full

data, which I defer to future research, covers 28 states, 470 counties, 40 million voters

and 1 billion choices. See Figure 1 for the full distribution of the data. This data would

allow me to simultaneously study local-level heterogeneity and make comparisons

between different jurisdictions.

Figure 1: Cast Vote Record Distribution

Note: This is a map of the United States subdivided by state and congressional district. Since congres-
sional districts are roughly equally weighted by population, this map shows more clearly how the data
are distributed. The scale does not use even breaks since I do not equally value coverage. Districts
with near-perfect coverage, like southern California and Colorado, are more useful for analysis than
districts with below 50% coverage, like Michigan or New York.
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Table 1: Comparison of Adams County, Colorado to Colorado and the United
States At-Large

Adams County Colorado United States

Demographics

Age
18+ years 74.3% 78.1% 77.9%
65+ years 11.1% 15% 16.8%

Race/Ethnicity
White 55.8% 70.7% 61.6%
Black or African-American 3.4% 4.1% 12.4%
American Indian and Alaska Native 1.8% 1.3% 1.1%
Asian 4.5% 3.5% 6%
Native Hawaiian or Pacific Islander 0.2% 0.2% 0.2%
Other 16.8% 8% 8.4%
Hispanic or Latino 41.7% 21.9% 18.7%

Socioeconomic
Median Household Income $73,817 $75,231 $64,994

Elections

Voters
Citizen Voting Age Population 64.8% 73.1% 71.5%
Share Joseph R. Biden Vote 56.7% 55.4% 51.3%
Share Donald J. Trump Vote 40.4% 41.9% 46.8%

Ballot Contents
(Average) Contests 52 32.9 37.6∗

(Average) % Local Contests 71.1% 76.4% 75.2%∗

(Average) % Nonpartisan Contests 61.2% 70% 44.8%∗

Note: Data is gathered from the US 2020 Decennial Census (Age, Race/Ethnicity, Citizen Voting Age
Population), the ACS 5-Year Estimates for 2020 (Socioeconomic), the New York Times (Presidential
election results), and the author’s CVR data (Ballot Contents).
∗ Average is based on the 28 states in the author’s CVR data, and may be unrepresentative of the
nation at large.
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Model Estimation

I follow in the footsteps of other researchers and estimate an Item-Response Theory

(IRT) model (Lewis 2001; Clinton, Jackman, and Rivers 2004; Martin and Quinn 2002). I

choose this method as opposed to other methods because I am estimating a continuous,

latent scale using only discrete information from each voter. A common specification

of the IRT model, reformulated from Jackman (2009), is the 2-Parameter model. Equa-

tion 1 shows the model, where j indexes voters and k indexes the contest. There are

three parameters of interest. First, αj ∈ R is the unobserved ideal point of voter j.

Second, γk is an unknown vector of item discrimination or slope parameters for each

candidate who could be chosen in contest k. γk describes the degree to which a vote

for each candidate in contest k informs the model’s placement of a voter’s ideal point

on the scale. βk is an unknown vector of item difficulty parameters which measure the

probability of a certain candidate being chosen, irrespective of the underlying trait. In

this context, this is the proportion of the votes that each candidate received. F(·) is a

function mapping the equation to the probability line. Given my data, where voters can

choose from any number of unordered candidates for each contest, F(·) is the softmax

function, a multivariate generalization of the inverse logit function. This coerces the

vector of probabilities for each candidate in the contest into a vector of probabilities

that sum to one.

πjk = Pr(yjk = c|αj, γk, βk) = F(αjγk − βk) (1)

Of particular importance to IRT models, and the categorical model in particular, are

the identification restrictions. As it stands, the model is not identified. Simply put, the

scales of α are not set and can be easily multiplied by any factor or shifted by any con-

stant without changing the relative location of each parameter. Similarly, the sign of γ

can vacillate with a corresponding switch in the sign of α and result in the same behav-
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ior. Therefore, a number of identification restrictions must be imposed. For a more full

discussion of these conditions, see Jackman (2009), Clinton, Jackman, and Rivers (2004),

and Rivers (2003). I choose to normalize α to mean 0 and standard deviation 1, which

I impose both in post-processing and by setting a strong standard normal prior. For γ,

typically the restriction that γ is positive is applied. However, because the categorical

model also requires a reference category to be set, and I have no a priori way to deter-

mine which candidate has the ”smallest” γ, I cannot force γ to be positive. Instead, I

set the winning candidate (based on their vote totals in the sample) as the reference cat-

egory, and let γ be unidentified during estimated. I then post-process the draws using

the Rotation-Sign-Permutation algorithm described in Papastamoulis and Ntzoufras

(2022). The implications of this choice are not important in the interpretation of the

results, but they make estimation and convergence of the model more challenging.

I estimate this model on a smaller subset of the Colorado data, using only voters

from Adams County, a large county that covers the northeast corner of Denver and

some rural areas outside of Denver. This constitutes a sample size of 7, 535 voters with

247, 917 choices. The model is estimated under a Bayesian framework using a bespoke

Stan model.7 I follow standard procedure and take 1000 warmup draws then sam-

ple from 1000 draws across 4 chains. After applying RSP,8 the model converges well.

I show the distribution of the R̂ statistic in Table C.1 and plot traceplots for 24 ran-

domly selected parameters in Figure C.1. After estimation, I also drop candidates that

received less than 5 votes from voters in the random sample.9

I validate my estimates in two ways. First, I aggregate estimated ideal points for

each voter, depending on which presidential candidate they selected. I take the mean

7. Code snippets are found in Appendix B
8. See Figure C.4 for a comparison of the draws before and after the application of Rotation-Sign-

Permutation.
9. This drops the following candidates, with the contest they participated in in parentheses: Laura

Ireland (US House 004), Steve Zorn (US House 007), Phil Collins (US President), Kyle Kenley (US Pres-
ident), Brock Pierce (US President), Brian Carroll (US President), Blake Huber (US President), Princess
Khadijah M. Pres Jacob-Fambro (US President), and Joe McHugh (US President).
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of the posterior draws for each voter, then plot the distribution of those means for the

presidential candidates. In the process of plotting the distribution, which is normalized

with a Gaussian kernel, I weight observations by the precision of the estimate – effec-

tively upweighting voters who’s ideal point the model is highly confident about and

downweighting voters it is uncertain about. The resulting distribution for Trump and

Biden voters is shown in Figure 2. I expect that Biden voters will mostly be distributed

to the left of Trump voters, which the plot confirms. The plot provide facial evidence

that the model is accurately representing reality at the aggregate level. One useful

application of the categorical model is that I am not only able to plot the posterior dis-

tribution of Biden and Trump voters’ ideal points, but also the distribution of ideal

points of all voters who cast ballots for third-party candidates in the election. Typically,

the number of voters for each third-party candidate, especially in the random subset I

have chosen, would make these candidates unable to be modelled. However, Bayesian

estimation ensures that information from other contests on the ballot allows me to

still estimate ideal points for voters who selected third-party candidates. I aggregate

those estimates in the same way as I do for Trump and Biden voters. The aggregated

estimates are instead displayed using a boxplot, with a similar weighting procedure,

since the kernel function for the density plots was overpowering the few number of

observations for some of the candidates. These boxplots are found in Figure 3. Because

there are low numbers of voters for each third-party candidate, I do not interpret these

estimates, but instead leave them as a proof of concept for what interpretation with the

full data could contribute.

I continue to test the results facially by plotting the posterior distribution of esti-

mated ideal points for 15 random voters in Figure 4. I expect that for individual voters,

those voters who voted straight-ticket Democrat (I temporarily ignore nonpartisan

elections for this exercise) will be to the left of both voters who voted straight-ticket

Republican and of those who split their tickets. The plot confirms this, the voters far on

13



Figure 2: Distribution of Ideal Points of Voters for Trump and Biden Voters

the left of the graph voted straight-ticket Democrat, while voters on the far right side

of the graph voted straight-ticket Republican. Voters in the middle split their tickets

among the partisan candidates. This plot also demonstrates an important point about

the model. Voters in the middle, who split their tickets, communicate more informa-

tion about their true ideal points than voters who voted straight-ticket, and thus have

tighter posterior distributions. Taken together, the aggregate distribution of ideal points

and the example individual ideal points suggests that the model accurately represents

reality.

Conducting validation of the model on down-ballot elections is also important, but

harder to do facially without deep contextual knowledge about each contest. Instead,

I compare the weighted, mean of each voter’s estimated ideal point (following the

same weighting procedure as above) to a well-accepted measure in the literature, DIME

scores (Bonica 2014). This comparison is non-trivial, since DIME scores and my esti-

mates of ideal points are not on the same scale. Instead of directly comparing points, I
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Figure 3: Distribution of Ideal Points of Voters for Third Party Presidential Candi-
dates
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Figure 4: Example Ideal Points from the Categorical Model

instead compare cutpoints between candidates after independently normalizing each

data set to a mean of zero and variance of one. The definition of cutpoints flows from

standard spatial models of voting (Enelow and Hinich 1984). In the standard binary

choice model, respondents are assumed to have quadratic utility functions over the

choices; i.e. Ui
(
ζ j
)
= −

∥∥ξi − ζ j
∥∥2

+ ηij and Ui(ψj) = −
∥∥ξi − ψj

∥∥2
+ vij, where ξi ∈ Rd

is the ideal point of respondent i, ηij and vij are the errors or stochastic elements of

utility, and ∥ · ∥ is the Euclidean norm (c.f. Jackman 2009, 458). Utility maximization

implies yij = 1 if Ui
(
ζ j
)
> Ui

(
ψj
)

and yij = 0 otherwise (c.f. 458). Similarly, this model

implies that the cutpoint between the two candidate choices (i.e. the point at which a

respondent would find themselves indifferent between the two candidates), is defined

as (ξ j + ψj)/2 (c.f. 458).

In the categorical model, the choices explode. Given a choice of candidate c, the

utility a respondent derives from that candidate can be expressed as Ui(ζ
c
j ) = −∥ξi −

ζc
j∥2 + ηc

ij. Then, a respondent chooses a specific candidate if the utility exceeds the
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utilities of all of the other proposals: Pr(Ui(ζ
c
j ) > Ui(ζ

c′
j )), where ζc′

j implies all of the

possible candidates except for candidate c. In these models, the cutpoint can be defined

as a series of pairwise comparisons between each of the candidates, following the same

formulation as in the binary choice model. In addition, because there are multiple

proposals, there is a conceptual area of indifference where a single respondent would

be indifferent between all of the possible candidates. With three candidates, one could

imagine three different cutting planes (unique for each voter) defined by the utility

functions from each candidate, and their intersection in the middle would be an area of

indifference. As the number of candidates (and thus dimensions) increases, the number

of cutting dimensions and comparisons increases exponentially.

For both my own scores, and for DIME scores, I compute cutpoints for all candi-

dates that are present in both my data and in the DIME scores. Only 16% of candidates

in my data are given scores in the DIME data. This is an additional advantage of my

method, since it does not rely on candidates publicly reporting their campaign contri-

butions or donating to other causes. The only requirement for a candidate to appear

in my data is that they were present on the ballot. Nevertheless, I proceed by compar-

ing cutpoints using the matching candidates. The cutpoints correlate well, at 0.88. The

distribution of cutpoints are shown in Figure 5. The plot indicates that the categorical

2-Parameter IRT method correlates well with the widely accepted DIME scores, when

they can be matched, which I treat as additional validation of my method.

Computational Extensions

The estimation of a complex Bayesian IRT model is a non-trivial task. Using the fully

Bayesian method, fitting a model on the subset of Adams County, Colorado still takes

approximately 10 hours using MIT’s SuperCloud cluster. A fully Bayesian estimation

of even a subset of the state of Colorado would take at least a week, and a reasonable

subset of the nation could take several months. Therefore, I must explore potential
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Figure 5: Comparison of the Cutpoints from the Categorical 2-Parameter Model
and DIME Scores

Note: This figure plots the cutpoints between candidates, using two separate datasets. On the x-axis,
average ideal points from my categorical 2-parameter IRT model for individual candidates are used
to compute cutpoints between that candidate and all other candidates. On the y-axis, I use Bonica
(2014) DIME scores as the average ideal point, then compute all cutpoints between a given candidate
and all other candidates. The cutpoints between candidates are matched between the two datasets and
plotted. In blue, a LOESS line of best fit is drawn. In dashed red is the 45◦ line.

18



alternatives to the fully Bayesian method. Since my model is already implemented

in Stan, it is relatively easy to switch to faster approximation methods. I choose the

Pathfinder method proposed in Zhang et al. (2022). ”Pathfinder is a variational method

for approximately sampling from differentiable log densities. Starting from a random

initialization, Pathfinder locates normal approximations to the target density along a

quasi-Newton optimization path, with local covariance estimated using the negative

inverse Hessian estimates produced by the L-BFGS optimizer. Pathfinder returns draws

from the Gaussian approximation with the lowest estimated Kullback-Leibler (KL) di-

vergence to the true posterior” (CmdStan User Guide 2024, c.f.). Pathfinder is an order

of magnitude faster (10 minutes vs 10 hours for the Adams County, Colorado sample)

and produces results that correlate with the fully Bayesian results at 0.66, although this

low correlation is primarily driven by the β parameter (For more detailed comparisons,

see Figure C.5).

For future versions of this project, I intend to proceed in two different ways. First, I

will solely use the Pathfinder method to estimate parameters for the model on a larger

scale. This should provide reasonable approximations of what the true underlying

parameters are. Second, I will also scale up the fully Bayesian models by using the pa-

rameters from the Pathfinder method as initial values, instead of randomly initializing

values. This should increase the speed of convergence for the fully Bayesian method,

allowing me to use less draws and arrive at similar results. I still need to test the com-

putational speed and feasibility of these two methods.

Results

To estimate the degree to which voters rely on partisanship in nonpartisan races, I fo-

cus on the item discrimination parameter in the categorical 2-parameter model, γk(c).

Larger absolute values of γ for a given candidate relative to the baseline candidate in
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that contest indicate that a vote for that candidate provides us with more information

as to the relative position of a certain voter on the first-dimension of the model. Simply

put, I interpret larger γ values as a sign that voters treat a candidate as more partisan. I

recognize that the use of this parameter implies a somewhat circular relationship, since

I both define the latent space based on nonpartisan and partisan contests, but then also

interpret the parameter as meaningful for this distinction. In future versions of this

project I have two plans to help address this circularity: (1) estimating a model with

multiple dimensions will allow more flexibility in the relationship and reduce some of

the dependence. (2) I also intend to fit a future version of the model only on partisan

elections since that more clearly defines the first dimension, and the discrimination pa-

rameter, as related to the degree of partisan voting in a contest. Then, I would use that

fitted model and project nonpartisan elections into this space, enforcing the partisan di-

mension from the partisan contests. Nevertheless, even given these limitations, I do not

anticipate that these extensions will dramatically change the substantive interepretation

of my results.

The 95% credible intervals of the discrimination parameter, γ, for nonpartisan races

are shown in Figure 6. The baseline categories are omitted for clarity, since all nonpar-

tisan races in Adams County are "Yes/No" contests. The important takeaway from this

figure is that the credible intervals for the discrimination parameters do not include

zero. Moreover, the judicial contests are further from zero than the ballot initiatives.

There is notable heterogeneity among the judicial contests, which I intend to explore

more in future research.

There is one limitation to this plot, which is that it gives us no sense how partisan

these races are compared to prototypical partisan races. To that end, Figure 7 shows

the same type of distributions for partisan elections. For this plot, baseline categories

are included for reference since the partisan races have more than two candidates. As

expected, these races also all have discrimination parameters different from zero. Be-
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cause both figures are on the same scale I can compare the degree of partisan voting be-

tween partisan and nonpartisan races. As should be expected, on average, the absolute

value of the discrimination parameter for partisan races is larger than the parameter

in nonpartisan races. Although nonpartisan races do not appear to be truly ”nonparti-

san” in the strict sense, they do appear to be less partisan than strictly partisan races.

Although the results provide some support for the theory that nonpartisan contests do

not activate partisan behavior among voters (which seems to be particularly true for

ballot propositions), they mostly support the claim that voters also use partisanship to

decide between candidates in nonpartisan races. However, they do not use partisanship

as much as they would in an officially partisan race.

Conclusion

I present results to help adjudicate between two competing theories about partisan-

ship in nonpartisan elections. I contribute new, more detailed answers to this question

using an original data set of ballot-level data in Colorado. In addition, the method I

demonstrate is able to estimate parameters for more candidates than previous methods

because it relies on a candidate’s presence on the ballot, rather than their participation

in roll call votes (Poole and Rosenthal 1985) or campaign contributions (Bonica 2018).

My results suggest that although voters appear to use partisanship less in nonpartisan

elections, it is nevertheless still present in nonpartisan elections. The goals of Progres-

sive Era reformers to ”insulate government from the pressures of parties and political

machines” seems to have been only partially successful.

One question remains for future research – if not partisanship, what else are voters

using to choose among candidates? Previous work has found that in the absence of

party labels, voters may rely on other heuristics, including: race or ethnicity (Pomper

1966; Arrington 1978; Bullock 1984; Matson and Fine 2006; Boudreau, Elmendorf, and
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Figure 6: Discrimination Parameters for Nonpartisan Elections

Note: This figure shows the posterior distribution for each discrimination parameter for all nonpartisan
elections in Adams County, Colorado. The parameters are grouped by the type of contest, and the
x-axis is allowed to vary for each type of contest. The baseline categories for each election are omitted.
Although discrimination parameters in categorical models are generally interpreted as relative to the
baseline, each nonpartisan election in this data is a "Yes/No" election so these posterior distributions
can be interpreted more easily.
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Figure 7: Discrimination Parameters for Partisan Elections

Note: This figure shows the posterior distribution for each discrimination parameter for all partisan
elections in Adams County, Colorado. The parameters are grouped by the type of contest, and the
x-axis is allowed to vary for each type of contest.

23



MacKenzie 2019; Crowder-Meyer, Gadarian, and Trounstine 2020; Burnett and Kogan

2022), issue positions (Abrajano, Nagler, and Alvarez 2005; Holman and Lay 2021), in-

cumbency (Squire and Smith 1988; Schaffner, Streb, and Wright 2001; Trounstine 2011),

ballot position (Mueller 1970; Miller and Krosnick 1998; Ho and Imai 2006), endorse-

ments (Krebs 1998; Arceneaux and Kolodny 2009; DeLuca 2023), or personal reputation

and traits (Raymond 1992; Banducci et al. 2008; Kirkland and Coppock 2018; Atkeson

and Hamel 2020). How do these characteristics interact with the perceived partisanship

of nonpartisan candidates or ballot initiatives? Future work should add information

on these important covariates to help further understand why voters use partisanship

more in some races rather than others.

In addition to expanding factors related to the degree of partisan voting in nonpar-

tisan elections, future work should take advantage of the full dataset of ballot-level

records. As I discuss in the methodology section, the estimation of Bayesian IRT mod-

els is non-trivial on even a subset of data from Adams County, Colorado. Including

more voters, from more geographies, would increase the external validity of this re-

search and let us draw more general conclusions about voter behavior in nonpartisan

elections. A promising avenue could be machine learning techniques, like those de-

ployed in Bonica (2018), to speed estimation.
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A Binary Outcomes

Lewis (2001) estimates voter ideal points using CVRs, but only relies on ballot ques-
tions. Ballot questions are inherently encoded as Yes/No choices, which means they
can be easily represented by an IRT binomial model. I also begin with a binomial
model, but depart slightly from Lewis. Instead of focusing on ballot questions, I in-
tentionally choose partisan races since they are more informative on the ideological
location of a voter. To do this, I create a binary variable, where a 1 indicates that the
voter selected the Republican candidate in the race.1 This necessitates that I subset the
data to only partisan races, which does not reduce the number of voters but it does
reduce the number of choices to 682, 858 (25% of the total). Equation 1 then becomes:

πjk = Pr(yjk = 1|αj, γk(c), βk(c)) = F(αjγk(c) − βk(c)) (2)

For the binary model, I set F(·) to be the inverse logistic function. The likelihood is
shown in Equation 3, given the common independence assumption across voters and
races (Clinton, Jackman, and Rivers 2004). In addition, because there are no unique
candidate effects, only effects at the race level, I drop the indexing by candidate within
each race and only reference the race itself.

L =
J

∏
j=1

K

∏
k=1

π
yjk
jk (1 − πjk)

1−yjk (3)

As it stands, the model is not identified. Simply put, the scales of α are not set and
can be easily multiplied by any factor or shifted by any constant without changing
the relative location of each parameter. Similarly, the sign of γ can vacillate with a
corresponding switch in the sign of α and result in the same behavior. Therefore, a
number of identification restrictions must be imposed. For a more full discussion of
these conditions, see Jackman (2009), Clinton, Jackman, and Rivers (2004), and Rivers
(2003). I choose to normalize the latent trait to mean 0 and standard deviation 1, which
I impose both in post-processing and by setting a strong standard normal prior. I also
impose the restriction that γ must always be positive, thus fixing its sign.

I start by fitting a simple 1-Parameter model. I estimate the previous Bernoulli
model using brms.2 All models are run for 4 chains, with 1000 warm-up iterations and
then 1000 sampling iterations. Trace plots are too numerous to display in full, but sam-
ples can be found in Figure C.2, all of which indicate good convergence. In addition,
Table C.1 displays summaries of the R̂ value for every parameter in the model.

1-Parameter models treat each race as equally important in determining the ideal
point of a voter, so I only look at those ideal points. I randomly select some voters
and plot their estimated ideal points in the left panel of Figure A.1. The plot acts as
a simple validation check; voters far on the left side of 0 cast straight-ticket Democrat
ballots whereas voters on the far right cast straight-ticket Republican ballots. Voters in

1. This choice ensures that ideal points on the right side of the scale will indicate greater likelihood to
select the Republican candidate, thus matching the standard perception of American political parties.

2. Relevant code snippets can be found in Appendix B

A-2



Figure A.1: Example Ideal Points from the Bernoulli Model

the middle cast more split-ticket ballots. The different exact estimates are due to the
differing impact of casting a ballot for the Republican in a specific race versus another,
which is driven entirely by the difficulty parameter in the 1-Parameter model but by
both the difficulty and discrimination parameter in the 2-Parameter model.

I then proceed after the 1-Parameter model to also fit a 2-Parameter model, which
allows the discrimination parameters to vary and be estimated, but requires them to be
positive. Again, Figure C.3 and Table C.1 show that the models converge well. As can
be seen in the right panel of Figure A.1, the estimates match up closely to the estimates
from the 1-Parameter model. That there isn’t much difference makes sense given the
context of US elections, where most voters choose the same party up and down the
ballot (Kuriwaki 2023), so no single race is likely to be more informative than others
on their location on a latent scale. To confirm this, I directly plot the difficulty and
discrimination parameters for a random set of races from the 2-Parameter model in
Figure A.2 and display the full estimates in Table A.1. Although many of the races are
significantly different from 0, most of the races are similarly discriminatory. I don’t
want to read too much into these parameters, but the lack of wild variation suggests
that they are all acting in a similar way to one another in the Bernoulli model.

Table A.1: Distribution of β in the 2-Parameter Bernoulli Model

Race Mean β SD β Mean γ SD γ

City Council - Castle Rock 1 7.51 1.69 0.10 0.06
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City Council - Castle Rock 2 7.57 1.72 0.09 0.06
City Council - Castle Rock 4 7.38 1.76 0.10 0.06
City Council - Castle Rock 6 7.62 1.68 0.09 0.06
County Clerk - Alamosa 0.38 0.16 0.12 0.03
County Commissioner - Adams 1 1.81 0.09 0.44 0.08
County Commissioner - Adams 2 10.16 1.41 0.06 0.03
County Commissioner - Adams 5 1.30 0.08 0.40 0.07
County Commissioner - Alamosa 1 −0.30 0.17 0.19 0.05
County Commissioner - Alamosa 3 −0.04 0.17 0.15 0.04
County Commissioner - Arapahoe 1 2.85 0.26 1.08 0.21
County Commissioner - Arapahoe 3 2.82 0.34 1.60 0.32
County Commissioner - Arapahoe 5 4.41 0.60 1.47 0.34
County Commissioner - Archuleta 1 0.21 0.14 0.06 0.02
County Commissioner - Archuleta 2 0.15 0.14 0.08 0.02
County Commissioner - Bent 1 −0.50 0.31 0.05 0.02
County Commissioner - Boulder 1 1.48 0.08 0.31 0.06
County Commissioner - Boulder 2 1.78 0.09 0.34 0.06
County Commissioner - Chaffee 1 1.01 0.16 0.13 0.03
County Commissioner - Cheyenne 3 −4.66 1.50 0.12 0.10
County Commissioner - Clear Creek 3 7.64 1.75 0.07 0.04
County Commissioner - Conejos 1 −0.10 0.20 0.09 0.03
County Commissioner - Conejos 3 0.91 0.24 0.10 0.03
County Commissioner - Costilla 3 6.63 1.86 0.08 0.05
County Commissioner - Custer 2 −0.97 0.24 0.02 0.01
County Commissioner - Custer 3 −0.13 0.21 0.01 0.01
County Commissioner - Delta 3 −0.58 0.13 0.16 0.03
County Commissioner - Dolores 3 0.41 0.42 0.12 0.06
County Commissioner - Douglas 2 1.69 0.14 0.86 0.16
County Commissioner - Douglas 3 0.60 0.10 0.67 0.12
County Commissioner - Eagle 1 0.73 0.14 0.17 0.04
County Commissioner - Eagle 2 0.66 0.13 0.15 0.03
County Commissioner - El Paso 2 −0.12 0.09 0.24 0.04
County Commissioner - El Paso 3 0.34 0.09 0.23 0.04
County Commissioner - El Paso 4 0.16 0.10 0.22 0.04
County Commissioner - Elbert 1 −6.91 1.29 0.07 0.04
County Commissioner - Elbert 3 −0.33 0.18 0.38 0.09
County Commissioner - Gilpin 1 0.51 0.31 0.21 0.07
County Commissioner - Gilpin 3 1.49 0.43 0.27 0.09
County Commissioner - Grand 1 0.37 0.15 0.08 0.02
County Commissioner - Grand 2 0.02 0.18 0.20 0.05
County Commissioner - Gunnison 1 0.46 0.16 0.16 0.04
County Commissioner - Gunnison 2 7.95 1.65 0.07 0.04
County Commissioner - Hinsdale 1 6.15 1.96 0.10 0.07
County Commissioner - Hinsdale 3 −1.76 0.67 0.08 0.05
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County Commissioner - Huerfano 1 0.55 0.23 0.09 0.03
County Commissioner - Huerfano 2 1.27 0.28 0.12 0.04
County Commissioner - Jefferson 1 1.08 0.06 0.33 0.06
County Commissioner - Jefferson 2 1.18 0.07 0.40 0.07
County Commissioner - Kit Carson 3 −0.77 0.23 0.07 0.03
County Commissioner - La Plata 2 8.86 1.52 0.06 0.03
County Commissioner - La Plata 3 8.87 1.58 0.06 0.03
County Commissioner - Lake 2 0.73 0.23 0.12 0.04
County Commissioner - Lake 3 7.22 1.84 0.07 0.04
County Commissioner - Larimer 2 1.06 0.08 0.40 0.07
County Commissioner - Larimer 3 0.98 0.08 0.38 0.07
County Commissioner - Mesa 1 −0.16 0.08 0.22 0.04
County Commissioner - Mesa 3 −0.20 0.07 0.19 0.03
County Commissioner - Mineral 2 −0.37 0.63 0.17 0.17
County Commissioner - Mineral 3 0.02 0.47 0.06 0.03
County Commissioner - Montezuma 3 0.07 0.13 0.13 0.03
County Commissioner - Morgan 1 −0.96 0.13 0.06 0.01
County Commissioner - Otero 1 −0.59 0.17 0.16 0.04
County Commissioner - Ouray 1 7.24 1.77 0.08 0.05
County Commissioner - Ouray 3 7.21 1.79 0.08 0.05
County Commissioner - Park 2 −0.32 0.15 0.09 0.02
County Commissioner - Pitkin 4 7.84 1.72 0.07 0.04
County Commissioner - Pitkin 5 7.11 1.65 0.11 0.07
County Commissioner - Pueblo 1 9.27 1.52 0.06 0.03
County Commissioner - Routt 2 7.49 1.75 0.07 0.04
County Commissioner - Saguache 1 0.68 0.28 0.17 0.05
County Commissioner - San Miguel 3 6.95 1.73 0.08 0.05
County Commissioner - Summit 1 1.62 0.23 0.33 0.08
County Commissioner - Summit 2 1.02 0.17 0.24 0.05
County Commissioner - Summit 3 8.22 1.64 0.06 0.04
County Commissioner - Weld 1 −0.30 0.11 0.28 0.05
County Commissioner - Weld 3 0.34 0.11 0.26 0.05
County Commissioner - Weld At-Large −0.24 0.06 0.28 0.05
County Commissioner - Yuma 2 0.03 0.20 0.04 0.01
County Commissioner - Yuma 3 0.15 0.20 0.03 0.01
County Treasurer - Grand 0.01 0.15 0.12 0.03
District Attorney - 1 0.92 0.06 0.36 0.06
District Attorney - 11 0.02 0.08 0.16 0.03
District Attorney - 16 −0.16 0.13 0.13 0.03
District Attorney - 17 1.16 0.07 0.41 0.08
District Attorney - 18 1.58 0.10 0.92 0.17
District Attorney - 2 10.41 1.42 0.06 0.03
District Attorney - 8 1.00 0.08 0.38 0.07
Sheriff - Hinsdale −4.06 1.53 0.15 0.13
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State Board Of Education - 1 1.97 0.05 0.30 0.05
State Board Of Education - 3 0.11 0.03 0.19 0.03
State Board Of Education - 7 1.40 0.07 0.26 0.05
State House - 001 1.55 0.19 0.32 0.07
State House - 002 2.10 0.17 0.29 0.06
State House - 003 7.61 1.30 2.62 0.66
State House - 004 2.22 0.21 0.27 0.06
State House - 005 2.58 0.25 0.36 0.07
State House - 006 2.54 0.22 0.34 0.07
State House - 009 2.50 0.23 0.39 0.08
State House - 010 3.98 0.41 0.56 0.12
State House - 011 1.87 0.19 0.40 0.08
State House - 012 2.74 0.27 0.51 0.11
State House - 013 1.62 0.13 0.30 0.06
State House - 014 0.37 0.11 0.25 0.05
State House - 015 0.15 0.12 0.26 0.05
State House - 016 0.72 0.15 0.31 0.06
State House - 017 1.29 0.17 0.23 0.05
State House - 018 1.62 0.18 0.29 0.06
State House - 019 −1.04 0.12 0.27 0.05
State House - 020 0.18 0.13 0.30 0.06
State House - 021 0.62 0.15 0.26 0.05
State House - 022 1.13 0.17 0.39 0.08
State House - 023 2.51 0.23 0.42 0.08
State House - 024 2.06 0.23 0.48 0.10
State House - 025 1.10 0.15 0.41 0.08
State House - 027 1.14 0.13 0.35 0.07
State House - 028 1.85 0.18 0.36 0.07
State House - 029 2.31 0.24 0.44 0.09
State House - 030 1.02 0.18 0.49 0.10
State House - 032 2.51 0.29 0.48 0.11
State House - 033 1.50 0.14 0.36 0.07
State House - 034 1.93 0.21 0.39 0.08
State House - 035 2.22 0.25 0.49 0.10
State House - 036 4.10 0.55 1.68 0.37
State House - 037 3.38 0.42 1.45 0.30
State House - 038 5.26 0.64 1.77 0.38
State House - 039 0.17 0.13 0.46 0.09
State House - 040 6.97 1.06 2.93 0.68
State House - 041 4.21 0.70 1.98 0.48
State House - 043 2.12 0.37 1.32 0.29
State House - 044 1.23 0.23 0.94 0.20
State House - 045 2.25 0.38 1.36 0.30
State House - 046 1.04 0.10 0.17 0.03
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State House - 047 0.41 0.09 0.16 0.03
State House - 048 −0.32 0.10 0.27 0.05
State House - 049 0.42 0.13 0.43 0.08
State House - 050 8.64 1.57 0.06 0.03
State House - 051 −3.52 0.27 0.12 0.03
State House - 052 1.35 0.15 0.39 0.08
State House - 053 8.90 1.57 0.06 0.03
State House - 054 −0.63 0.07 0.23 0.04
State House - 056 2.08 0.28 1.02 0.21
State House - 057 −1.36 0.19 0.15 0.04
State House - 058 −0.40 0.08 0.17 0.03
State House - 059 0.61 0.08 0.17 0.03
State House - 060 −0.11 0.08 0.20 0.04
State House - 061 0.94 0.09 0.21 0.04
State House - 062 0.75 0.09 0.15 0.03
State House - 063 0.15 0.10 0.26 0.05
State House - 064 −0.92 0.11 0.31 0.07
State Senate - 004 0.61 0.15 0.82 0.16
State Senate - 008 0.29 0.09 0.23 0.04
State Senate - 010 0.69 0.11 0.30 0.06
State Senate - 012 0.17 0.10 0.29 0.05
State Senate - 014 1.66 0.12 0.40 0.08
State Senate - 017 1.51 0.12 0.38 0.07
State Senate - 018 3.32 0.24 0.49 0.10
State Senate - 019 1.93 0.14 0.40 0.07
State Senate - 021 2.09 0.19 0.50 0.10
State Senate - 023 0.46 0.08 0.31 0.06
State Senate - 025 0.41 0.10 0.37 0.07
State Senate - 026 6.20 0.72 2.16 0.46
State Senate - 027 3.69 0.35 1.50 0.30
State Senate - 028 8.02 1.11 3.38 0.77
State Senate - 029 9.19 1.51 0.07 0.04
State Senate - 031 1.95 0.13 0.31 0.06
State Senate - 033 9.10 1.50 0.07 0.04
State Senate - 035 −0.20 0.06 0.16 0.03
University Regent - University Of Colorado 2 1.83 0.06 0.37 0.07
University Regent - University Of Colorado 6 2.93 0.17 1.32 0.24
University Regent - University Of Colorado 7 10.34 1.41 0.06 0.03
US House - 001 2.44 0.07 0.35 0.06
US House - 002 1.99 0.06 0.39 0.07
US House - 003 0.35 0.03 0.19 0.03
US House - 004 −0.01 0.04 0.33 0.06
US House - 005 0.26 0.04 0.24 0.04
US House - 006 3.68 0.18 1.21 0.22
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US House - 007 1.69 0.06 0.33 0.06
US President - Federal 1.06 0.02 0.17 0.03
US Senate - Colorado 0.68 0.02 0.22 0.04
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Figure A.2: Example Discrimination and Difficulty Parameters in the Bernoulli
Model

Note: This plot displays the posterior distributions of the difficulty (β) and discrimination (γ) parame-
ters from the 2-Parameter Bernoulli model. These are a random sample of 27 races from the model.
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B Code for Estimation

A brms code

I use brms to estimate the Bernoulli models. For the 1-Parameter model, I use the
random-effects formulation of an IRT model, as shown below, where I include a ran-
dom effect for the race and for each group of voters. This approach is recommended
by Bürkner (2021). I also set relatively uninformative priors on the distributions of each
variable.

bf (
choice_rep ~ 1 + (1 | race ) + (1 | cvr_id ) ,
family = brmsfamily ( " b e r n o u l l i " , l i n k = " l o g i t " )

)

Again, as recommended by Bürkner (2021), I use a random-effects formulation for
the 2-Parameter Bernoulli model as well. The code for this estimation is shown below,
with the priors set at their default, relatively uninformative values.

bf (
choice_rep ~ exp ( loggamma ) * alpha − beta ,
nl = TRUE,
alpha ~ 0 + (1 | cvr_id ) ,
beta ~ 1 + (1 | race ) ,
loggamma ~ 0 + (1 | race ) ,
family = brmsfamily ( " b e r n o u l l i " , l i n k = " l o g i t " )

)

B Stan code

data {
in t <lower=1> J ; // number of voters
in t <lower=1> K; // number of r a c e s
int <lower=1> C; // number of candidates
array [ J , K] in t <lower =0 , upper=C> votes ;
array [K] in t <lower =0 , upper=C> s i z e s ;

}
parameters {

r e a l mu_beta ;
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vector [ J ] alpha ;
vec tor [C] beta_raw ;
vec tor [C] gamma_raw ;
rea l <lower=0> sigma_beta ;
rea l <lower=0> sigma_gamma ;

}
transformed parameters {

vec tor [C] beta = rep_vector ( 0 , C ) ;
vec tor [C] gamma = rep_vector ( 0 , C ) ;
{

i n t pos_p = 0 ;
f o r ( k in 1 :K) {
f o r ( c in 2 : s i z e s [ k ] ) {

beta [ pos_p + c ] = beta_raw [ pos_p + c ] + mu_beta ;
gamma[ pos_p + c ] = gamma_raw[ pos_p + c ] ;

}
pos_p += s i z e s [ k ] ;
}

}
}
model {

mu_beta ~ s tudent_ t ( 3 , 0 , 2 . 5 ) ;
alpha ~ std_normal ( ) ;
sigma_beta ~ s tudent_ t ( 3 , 0 , 2 . 5 ) ;
sigma_gamma ~ student_ t ( 3 , 0 , 2 . 5 ) ;
i n t pos_t = 1 ;
f o r ( k in 1 :K) {

i n t s = s i z e s [ k ] ;
i f ( s == 0 ) {
continue ;
}
segment ( beta_raw , pos_t , s ) ~ normal ( 0 , sigma_beta ) ;
segment (gamma_raw , pos_t , s ) ~ normal ( 0 , sigma_gamma ) ;
vec tor [ s ] gamma_s = segment (gamma, pos_t , s ) ;
vec tor [ s ] beta_s = segment ( beta , pos_t , s ) ;
f o r ( j in 1 : J ) {
i f ( votes [ j , k ] > 0 ) {

c a l c = gamma_s . * alpha [ j ] − beta_s ;
votes [ j , k ] ~ c a t e g o r i c a l _ l o g i t ( c a l c ) ;

} }
pos_t += s ;

}
}
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C Supplementary Figures and Tables

Table C.1: Distribution of the R̂ Diagnostic

Model Mean Median % < 1.1 Max

Bernoulli 1-Parameter 1.00 1.00 99.8% 1.37

Bernoulli 2-Parameter 1.00 1.00 100.0% 1.10

Categorical 2-Parameter 1.01 1.00 98.1% 1.63

Note: This table displays the distribution of the Gelman-Rubin R̂ diagnostic, commonly used to as-
sess the convergence of Bayesian models (Gelman and Rubin 1992). For all three models, the R̂ was
computed for each parameter in the model, then simple descriptive statistics are reported – the mean,
median, max R̂, and the percent of R̂s below 1.1.
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Figure C.1: Traceplots for 24 random parameters in the Categorical 2-Parameter
Model
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Figure C.2: Traceplots for 24 random parameters in the Bernoulli 1-Parameter
Model
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Figure C.3: Traceplots for 24 random parameters in the Bernoulli 2-Parameter
Model

A-15



Figure C.4: Comparison of the Discrimination Parameters for US Presidential Can-
didates in the Categorical 2-Parameter Model

Note: This plot displays the distribution of discrimination parameters for each candidate in the US
Presidential election, all in reference to the base category, ”Bill Hammons”. In the left panel, distribu-
tions before the application of the Rotation-Sign-Permutation algorithm (Papastamoulis and Ntzoufras
2022), which are clearly bimodal, and in the right panel, distributions after applying the algorithm.
Although only presidential candidates are shown here, all candidates in all races are treated with the
algorithm.
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Figure C.5: Comparison of Parameters from the Pathfinder method and the fully
Bayesian method

Note: This figure compares parameters from the Pathfinder method and the fully Bayesian, Hamilto-
nian Monte Carlo, method. On the x-axis are the estimates from the fully Bayesian method and on the
y-axis are estimates from Pathfinder. Parameter values have been standardized to the [0, 1] interval
to facilitate easier comparison. The estimates are disaggregated by the parameter being estimated. In
blue is a smoothed GAM fit to the points, and in red is the 45 degree line.
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